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Abstract
In this paper two things are done. We first prove that an arbitrary power p
of the Schrödinger Lagrangian in arbitrary dimension always enjoys the non-
relativistic conformal symmetry. The implementation of this symmetry on
the dynamical field involves a phase term as well as a conformal factor that
depends on the dimension and on the exponent. This non-relativistic conformal
symmetry is shown to have its origin on the conformal isometry of the power
p of the Klein–Gordon Lagrangian in one higher dimension which is related to
the phase of the complex scalar field.

PACS number: 11.25.Hf

1. Introduction

When a law of physics does not change against some transformations, the system is said
to exhibit some symmetries. The symmetries of a physical system are given by the
transformations that do not change the mathematical structure of the system. One can even
start by defining the transformations and then to find the mathematical structure compatible
with these transformations. The determination of the symmetries of a system can also be a
powerful instrument since it may allow us to put the problem into a simpler form or it can
permit us to obtain nontrivial solutions from trivial ones. It is then clear that the problem of the
identification of the symmetries underlying an equation is not an academic question but rather
a fundamental one. In this paper we shall be concerned with the Schrödinger symmetry that is
defined as the dynamical symmetry leaving invariant the free Schrödinger equation (see [1],
[2] and [3]). The Schrödinger invariance has been relevant in a wide variety of situations as
celestial mechanics [4], non-relativistic field theory [5, 6], non-relativistic quantum mechanics
[7], hydrodynamics [8–11], in the context of the AdS/CFT correspondence [12] as well as in
statistical physics [13].
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The Schrödinger group is defined as the largest group of spacetime transformations which
leave invariant the free Schrödinger equation[

i∂t +
1

2
�d

]
� = 0, (1)

where the operator �d represents the Laplacian in d spatial dimensions. In d + 1 dimensions,
the Schrödinger group is a ([d(d + 3) + 6]/2)-dimensional Lie group which can be viewed
as the semidirect sum of the static Galilei group with the SL(2, R) group. The static Galilei
group which is a (d(d +3)/2)-parameter group induces the static Galilei transformations given
by

t → t, �x → R�x + �χ − �vt, (2)

where R ∈ SO(d), �χ ∈ R
d and �v ∈ R

d generate respectively the rotations, the spacial
translations and the Galilean boosts. On the other hand, SL(2, R) is the group which induces
the following transformations,

t → t̃ = αt + β

γ t + δ
, �x → �̃x = �x

γ t + δ
, (3)

and is a three-parameter group since the parameters are tied by the relation αδ−βγ = 1. These
transformations include the time translations (γ = 0, α = δ = 1), the dilatations (β = γ = 0)

and the special conformal transformations also called the expansions (α = δ = 1, β = 0).
The static Galilei transformations and time translations induce the following field change,

�̃(t, �x) = exp

(
i(�x · �v − |�v|2t

2
)

)
�(t + β,R�x + �χ − �vt), (4)

while the scalar field changes under the dilatation as

�̃(t, �x) = αd/2�(α2t, α�x), (5)

and under the special conformal transformations as

�̃(t, �x) = 1

(1 + γ t)d/2
exp

(
iγ |�x|2

2(1 + γ t)

)
�

(
t

1 + γ t
,

�x
1 + γ t

)
. (6)

We remark that, in the case of the dilatation and the expansion, the transformation of the
dynamical field is associated with a multiplicative factor given by J

d
2(d+2) , where J is the

Jacobian of the transformation linking (t̃ , �̃x) → (t, �x). In order to be complete, we also recall
that the free Schrödinger equation (1) is derived from the following Lagrangian,

LS = − i

2
(�	∂t� − �∂t�

	) +
1

2
| �∇�|2, (7)

which enjoys the Schrödinger symmetry as well.
The plan of the paper is organized as follows. In the next part, we show that an arbitrary

power p of the Schrödinger Lagrangian (7) in d + 1 dimensions also enjoys the non-relativistic
conformal symmetry. The associated Noether conserved quantities are derived and are shown
to reduce to the standard Schrödinger quantities for p = 1. The origin of this non-relativistic
conformal symmetry is explained in section 3 using a Kaluza–Klein-type framework in one
higher dimension; this extra dimension is related to the phase of the complex scalar field. More
precisely, we define a (d + 2)-dimensional Minkowski spacetime endowed with a covariantly
constant and lightlike vector field ξ . On this manifold, we consider the relativistic action given
by the power p of the complex Klein–Gordon Lagrangian, and we show that the conformal
isometries preserving the vector ξ are precisely the non-relativistic symmetries of the extended
Schrödinger equation.
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2. Non-relativistic conformal equation

We now consider an action in (d + 1) dimensions defined as an arbitrary power p of the
Schrödinger Lagrangian (7)

Sp =
∫

dd �x dtLp

S =
∫

dd �x dt

(
− i

2
(�	∂t� − �∂t�

	) +
1

2
| �∇�|2

)p

, (8)

where p is a real parameter. The associated field equation reads

p

(
i∂t� +

1

2
�d�

)
Lp−1

S +
1

2
p(p − 1)(i�(∂tLS) + �∇� · �∇LS)Lp−2

S = 0, (9)

and reduces to the standard Schrödinger equation for p = 1. For later convenience, we derive
from (9) the continuity-like equation given by

∂t

(|�|2Lp−1
S

)
+ �∇ ·

( −i

2m
(�	 �∇� − � �∇�	)Lp−1

S

)
= 0. (10)

We now show that, for any arbitrary value of p �= 0, the extended equation (9) or equivalent
action (8) possesses the Schrödinger symmetry. Firstly, the spacetime transformations leaving
invariant the extended equation are given by the usual Schrödinger transformations (2) and
(3). The main difference lies in the implementation of the conformal transformations on
the dynamical field �. Indeed, the action of the static Galilei transformations and time
translations is the same as in the standard Schrödinger case (4), but the scalar field changes
under the dilatation (γ = 0) and the special conformal transformation (α = 1) as

�̃(t, �x) =
(

α

1 + γ t

) d+2−2p

2p

exp

(
i

γ |�x|2
2(1 + γ t)

)
�

(
α2t

γ t + 1
,

α�x
γ t + 1

)
. (11)

This means that for a scalar field �(t, �x) solving the field equation (9), the transformed field
�̃(t, �x) defined by (11) also verifies the equation for any value of the parameter p. The
same conclusion can be obtained by observing that under a dilatation or a special conformal
transformation (11), the Schrödinger Lagrangian rescales as

LS →
(

α

1 + γ t

)(d+2)/p

LS,

and hence the power p of the Schrödinger Lagrangian exactly compensates the Jacobian of
the conformal transformations which means that action (8) remains unchanged Sp → Sp. A
direct application of the Noether theorem yields the following constants of motion,

H =
∫

dd �x H =
∫

dd �x
[p

2
| �∇�|2Lp−1

S

]
,

�P =
∫

dd �x �P =
∫

dd �x
[
− ip

2
(�	 �∇� − � �∇�	)Lp−1

S

]
,

Mij =
∫

dd �x(xiPj − xjPi ), (12)

�G = t �P − p

∫
dd �x|�|2Lp−1

S ,

D = tH − 1

2

∫
dd �x(�x · �P),

K = −t2H + 2tD +
p

2

∫
dd �x(|�x|2|�|2Lp−1

S

)
,
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which correspond respectively to the energy (time translation), the momentum (space
translations), the rotations, the Galilean boosts, the dilatation and the special conformal
transformation. Note that the conservation of the functional K can be viewed as a consequence
of the conservations of the energy and dilatation functionals together with the continuity
equation (10). We also mention that more general nonlinear terms yielding Schrödinger
invariant equations can also be considered; see [14] and [15].

Various comments can be made at this stage of the analysis. Firstly, for p = 1, all the
expressions derived reduce to those associated with the standard Schrödinger theory. Secondly,
the invariance of the extended action is achieved for any value of the power p. This is due to the
fact that the Jacobian of the conformal transformation can always be compensated by rescaling
in an appropriate way the dynamical field (11). For the particular exponent p = (d + 2)/2,
the multiplicative factor different from the phase term in the field transformation (11) is no
longer present. This means that the Jacobian of the conformal transformation is exactly
compensated by the power p = (d + 2)/2 of the free Schrödinger Lagrangian without the
necessity of rescaling the dynamical field but just by operating a phase change. In the next
section, we will explain the origin of this extended non-relativistic Schrödinger symmetry
within a higher-dimensional relativistic context.

3. Relativistic origin

The purpose of this section is to provide an explanation of the Schrödinger symmetry of
the extended action using a relativistic framework in one higher dimension. The clue to this
relativistic framework lies in the fact that the non-relativistic spacetime Q in (d +1) dimensions
can be viewed as the quotient of a (d + 2)-dimensional Lorentz manifold M by the integral
curves of a covariantly constant, lightlike vector field ξ . This correspondence has been used
in order to derive the Schrödinger symmetry of the standard Schrödinger equation from the
relativistic conformal symmetry of the conformal wave equation (see [16], [4] and [17]).

On the manifold M we adopt the coordinate system (t, �xd, s) where (t, �xd) are the
coordinates on Q and s is the additional coordinate, and we consider the (d + 2)-dimensional
action given by the power p of the Klein–Gordon Lagrangian

Sp =
∫

M

√−g dd+2x

[
1

2
gµν∂µψ∂νψ

	

]p

. (13)

The field equation obtained by varying this action with respect to the complex scalar field
yields

1√−g
∂µ[

√−g∂µψ(∂σψ∂σψ	)p−1] = 0. (14)

On the Minkowski spacetime, we consider the flat metric written in lightcone coordinates as

ds2 = d �xd
2 + 2 dt ds (15)

for which the covariantly constant, lightlike vector field ξ is chosen to be ξµ∂µ = ∂s . In order
to establish the correspondence with the extended Schrödinger equation (9), the field ψ is
assumed to satisfy an equivariance condition given by

ξµ∂µψ = iψ, (16)

which in turn implies that the function

� = e−isψ (17)

is a function defined on Q since ∂s� = 0. It is then simple to see that in Minkowski space with
metric (15), the extended wave equation (14) together with the equivariance condition (16) is
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equivalent to the extended Schrödinger equation (9). The same conclusion can be achieved at
the level of the actions in the sense that action (13) evaluated on the flat metric (15) for a scalar
field satisfying the equivariance condition (16) reduces to the extended Schrödinger action (8).
We now study the symmetries of the coupled system given by equation (14) with condition
(16). We recall that a conformal isometry on the Lorentz manifold M is a diffeomorphism
ϕ : M → M , for which there is a nonvanishing function � such that (ϕ	g)µν = �2gµν (see,
e.g., [18]). It is simple to show that the conformal isometries that preserve the vertical vector,
i.e. ϕ	ξ = ξ , are symmetries of the coupled system (14) and (16) for which the implementation
on the dynamical field is given by

ψ̃ = �
2p−d−2

2p ϕ	ψ. (18)

In the case of the flat metric (15), the ξ -preserving conformal isometries transformations form
a subgroup of the conformal group and the conformal Killing vector field is given in the basis
(∂t , �∂, ∂s) by

(Xµ) =




χt2 + δt + ε

R�x +
(

1
2δ + χt

) �x + t �β + �γ
− 1

2χ |�x|2 − �β · �x + η


 , (19)

where R ∈ SO(d), �β, �γ , ε, χ, δ and η are interpreted as rotation, boost, space translation,
time translation, expansion, dilatation and vertical translation. The integration of the Lie
differential equation for transformation group yields the following spacetime transformations,

�̃x = R�x − �vt + �χ
γ t + δ

, (20a)

t̃ = αt + β

γ t + δ
, (20b)

s̃ = s +
γ

2

|R�x − �vt + �χ |2
γ t + δ

+ R�x · �v − t

2
|�v|2 + h, (20c)

with the restriction (αδ −βγ ) = 1. The corresponding conformal isometry factor is given by

� = �(t) = γ t + δ. (21)

The first two equations (20a)–(20c) correspond to the Schrödinger transformations, while the
third transformation (20) possesses information concerning the phase change of the complex
scalar field. Indeed, combining the equivariance condition (16)–(17) together with the law
transformation of ψ (18), we have

ψ̃(t, �x, s) = eis�̃(t, �x) �⇒ �̃(t, x) = �(t)
2p−d−2

2p ei(s̃−s)�(t̃, �̃x), (22)

and we obtain the change field for the extended Schrödinger field (11). More precisely, from
this expression, it is clear that the phase change of the Schrödinger field is associated with the
change of the additional coordinate s, while the multiplicative factor is given by the conformal
isometry factor (21).

To conclude, we mention that the same analysis can be done in curved spacetime by
considering the following action,

Lp =
∫ √−g dd+2x

[
1

4
(2p − d − 2)(ψ�ψ	 + ψ	�ψ)

+
(2p − d − 2)2

8p(d + 1)
R|ψ |2 − 1

2
(d + 2)(p − 1)gµν∂µψ∂µψ	

]p

, (23)
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which enjoys, for any value of the parameter p, the conformal invariance with weight given by

gµν → �2gµν, ψ → �
2p−d−2

2p ψ. (24)

This action generalizes the standard conformal wave action since, for p = 1, the conformal
extended action (23) reduces after an integration by parts to the conformal wave action. It is
also interesting to note that for the particular exponent p = (d + 2)/2 the conformal action
reduce to the standard kinetic term to this power. In this case, the conformal symmetry can be
viewed as the higher-dimensional extension of the two-dimensional conformal Klein–Gordon
action [19]. Note that the two-dimensional situation is very special since, in this case, the
conformal algebra is the direct sum of two isomorphic infinite-dimensional algebras [20].

Finally, it is also legitimate to wonder about the non-relativistic limit which is a quite
difficult question [21]. In the standard case p = 1, it has been shown by direct computation
that the resulting Lie algebra is not the Schrödinger algebra but a different algebra of same
dimension and not isomorphic to the Schrödinger algebra [22]. For p �= 1, the same conclusion
will still be valid since the algebras involved are the same.

4. Summary and discussion

Here, we have shown that the non-relativistic conformal symmetry of the Schrödinger
Lagrangian is still valid for any power of the Schrödinger Lagrangian. More precisely, the
spacetime transformations leaving invariant the extended action are the usual Schrödinger
transformations but the main difference lies in the implementation of the conformal
transformations on the dynamical field. Indeed, this implementation is realized through a
conformal factor that depends on the dimension and on the exponent as well as with a phase
term. There exists a particular value of the exponent for which this conformal factor is
not longer present. For a generic value of the exponent, the associated Noether conserved
quantities have been obtained. The origin of this non-relativistic conformal symmetry has been
analysed within a relativistic framework in one higher dimension. The same conclusions may
also be valid by considering an arbitrary power of the Newton–Hooke Lagrangian because
of the various analogies between both models. The main difference lies in the fact that
the conformal symmetry of the free Schrödinger equation is associated with the conformal
isometries that preserve the vertical vector in flat space, while in the Newton–Hooke context
the metric is an homogenous plane wave metric. This is due to the fact that the Newton–Hooke
group can be obtained from the (A)dS groups as the non-relativistic limit with the velocity
of light c going to infinity and the cosmological constant � going to zero while keeping c2�

finite (see, e.g., [23] and for recent work [24]).
The conformal invariance of the relativistic action (23) independently of the power p may

be interesting in the search of black hole solutions. Indeed, in the standard case p = 1 and in
four dimensions, the Einstein equations with this conformal source admits black hole solutions
[25, 26]. In this example, the conformal character of the matter source has been crucial since
the solution has been derived using the machinery of conformal transformations applied to
minimally coupled scalar fields [26]. It would be interesting to explore whether there exist
black hole solutions for the Einstein equations with the conformal source (23).
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